10,490 research outputs found

    Efficient method for simulating quantum electron dynamics under the time dependent Kohn-Sham equation

    Get PDF
    A numerical scheme for solving the time-evolution of wave functions under the time dependent Kohn-Sham equation has been developed. Since the effective Hamiltonian depends on the wave functions, the wave functions and the effective Hamiltonian should evolve consistently with each other. For this purpose, a self-consistent loop is required at every time-step for solving the time-evolution numerically, which is computationally expensive. However, in this paper, we develop a different approach expressing a formal solution of the TD-KS equation, and prove that it is possible to solve the TD-KS equation efficiently and accurately by means of a simple numerical scheme without the use of any self-consistent loops.Comment: 5 pages, 3 figures. Physical Review E, 2002, in pres

    Analysis of the Law 30407 «Law on Animal Protection and Welfare» in Peru

    Get PDF
    El presente artículo de revisión tiene por objeto analizar la nueva Ley 30407 «Ley de Protección y Bienestar Animal en el Perú», fundamentada en la necesidad del país de establecer una ley que promueva la defensa y garantice la protección y bienestar de los animales sin distinción de especie, así como la conservación de la biodiversidad. Asimismo, se brindan alcances de leyes similares promulgadas en otros países del continente americano y sugerencias necesarias de ser implementadas a futuro en un corto o mediano plazo.The aim of this paper is to analyze the new Law of Animal Protection and Welfare in Peru which is based on the need to establish a law that promotes the defense and ensures the protection and welfare of animals regardless of species as well as the biodiversity conservation. Furthermore, some scopes of legislations enacted in other American countries and suggestions needed to be implemented in the short to medium term are given

    L\'evy-Schr\"odinger wave packets

    Full text link
    We analyze the time--dependent solutions of the pseudo--differential L\'evy--Schr\"odinger wave equation in the free case, and we compare them with the associated L\'evy processes. We list the principal laws used to describe the time evolutions of both the L\'evy process densities, and the L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and unitary evolutions we will consider only absolutely continuous, infinitely divisible L\'evy noises with laws symmetric under change of sign of the independent variable. We then show several examples of the characteristic behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the bi-modality arising in their evolutions: a feature at variance with the typical diffusive uni--modality of both the L\'evy process densities, and the usual Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping intact examples and results; changed format from "report" to "article"; eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old numbers) from text to Appendices C, D (new names); introduced connection between Relativistic q.m. laws and Generalized Hyperbolic law

    Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode

    Get PDF
    A simple scheme for conditional generation of nonclassical light with sub-Poissonian photon-number statistics is proposed. The method utilizes entanglement of signal and idler modes in two-mode squeezed vacuum state generated in optical parametric amplifier. A quadrature component of the idler mode is measured in balanced homodyne detector and only those experimental runs where the absolute value of the measured quadrature is higher than certain threshold are accepted. If the threshold is large enough then the conditional output state of signal mode exhibits reduction of photon-number fluctuations below the coherent-state level.Comment: 7 pages, 6 figures, REVTe

    A Simple Quantum Computer

    Get PDF
    We propose an implementation of a quantum computer to solve Deutsch's problem, which requires exponential time on a classical computer but only linear time with quantum parallelism. By using a dual-rail qubit representation as a simple form of error correction, our machine can tolerate some amount of decoherence and still give the correct result with high probability. The design which we employ also demonstrates a signature for quantum parallelism which unambiguously delineates the desired quantum behavior from the merely classical. The experimental demonstration of our proposal using quantum optical components calls for the development of several key technologies common to single photonics.Comment: 8 pages RevTeX + 6 figures in postscrip

    Charge Fluctuations in Geometrically Frustrated Charge Ordering System

    Full text link
    Effects of geometrical frustration in low-dimensional charge ordering systems are theoretically studied, mainly focusing on dynamical properties. We treat extended Hubbard models at quarter-filling, where the frustration arises from competing charge ordered patterns favored by different intersite Coulomb interactions, which are effective models for various charge transfer-type molecular conductors and transition metal oxides. Two different lattice structures are considered: (a) one-dimensional chain with intersite Coulomb interaction of nearest neighbor V_1 and that of next-nearest neighbor V_2, and (b) two-dimensional square lattice with V_1 along the squares and V_2 along one of the diagonals. From previous studies, charge ordered insulating states are known to be unstable in the frustrated region, i.e., V_1 \simeq 2V_2 for case (a) and V_1 \simeq V_2 for case (b), resulting in a robust metallic phase even when the interaction strenghs are strong. By applying the Lanczos exact diagonalization to finite-size clusters, we have found that fluctuations of different charge order patterns exist in the frustration-induced metallic phase, showing up as characteristic low energy modes in dynamical correlation functions. Comparison of such features between the two models are discussed, whose difference will be ascribed to the dimensionality effect. We also point out incommensurate correlation in the charge sector due to the frustration, found in one-dimensional clusters.Comment: 8 pages, 9 figure

    Surface plasmon-polaritons in graphene, embedded into medium with gain and losses

    Get PDF
    The paper deals with the theoretical consideration of surface plasmon-polaritons in the graphene monolayer, embedded into dielectric with spatially separated gain and losses. It is demonstrated, that presence of gain and losses in the system leads to the formation of additional mode of graphene surface plasmon-polaritons, which does not have its counterpart in the conservative system. When the gain and losses are mutually balanced, the position of exceptional point-transition point between unbroken and broken [Formula: see text]-symmetry-can be effectively tuned by graphene's doping. In the case of unbalanced gain and losses the spectrum of surface plasmon-polaritons contains spectral singularity, whose frequency is also adjustable through the electrostatic gating of graphene.European Commission through the project 'Graphene—Driven Revolutions in ICT and Beyond' (Ref. No. 785219), and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2019. Additionally, YVB acknowledges financing from FEDER and the portuguese Foundation for Science and Technology (FCT) through project PTDC/FIS-MAC/28887/201

    Bootstrap current calculations with the SPBSC and the VENUS+δf codes for the Large Helical Device

    Get PDF
    Total bootstrap current calculations with the updated VENUS+δf code that incorporates energy convolution and the momentum correction technique have been performed for the reference tokamak JT-60U cases and for the experimental Large Helical Device (LHD, NIFS, Japan) configurations with different magnetic axis positions. The VENUS+δf results have been compared with the corresponding tokamak results of the neoclassical bootstrap current models for the general axisymmetric equilibria and arbitrary collisionality regime, as well as with the corresponding 3D SPBSC code numerical predictions and with the LHD experimental tendency

    Chiral fermions and torsion in the early Universe

    Get PDF
    Torsion arising from fermionic matter in the Einstein-Cartan formulation of general relativity is considered in the context of Robertson-Walker geometries and the early Universe. An ambiguity in the way torsion arising from hot fermionic matter in chiral models should be implemented is highlighted and discussed. In one interpretation, chemical potentials in chiral models can contribute to the Friedmann equation and give a negative contribution to the energy density.Comment: 5 pages revtex4; error in v1 corrected

    Superconductivity and a Mott Transition in a Hubbard Model on an Anisotropic Triangular Lattice

    Full text link
    A half-filled-band Hubbard model on an anisotropic triangular lattice (t in two bond directions and t' in the other) is studied using an optimization variational Monte Carlo method, to consider the Mott transition and superconductivity arising in \kappa-BEDT-TTF_2X. Adopting wave functions with doublon-holon binding factors, we reveal that a first-order Mott (conductor-to-nonmagnetic insulator) transition takes place at U=U_c approximately of the band width, for a wide range of t'/t. This transition is not directly connected to magnetism. Robust d-wave superconductivity appears in a restricted parameter range: immediately below U_c and moderate strength of frustration (0.4\lsim t'/t\lsim 0.7), where short-range antiferromagnetic correlation sufficiently develops but does not come to a long-range order. The relevance to experiments is also discussed.Comment: 15 pages, 17 figures, submitted to J. Phys. Soc. Jp
    corecore